Состав сустава входят

Полезная информация на тему: "состав сустава входят" с полной проработкой материала. На странице собрана и переработана информация, позволяющая полностью раскрыть тему. Если в процессе прочтения возникают вопросы, то дочитайте стать. до конца, и если уже там не найдете ответ, то вы всегда можете получить ответ в комментариях.

2.Виды соединений костей. Непрерывные соединения, их классификация, строение.

Существуют два основных типа соединений костей: непрерывные и прерывные, или суставы. Непрерывные соединения имеются у всех низших позвоночных и на эмбриональных стадиях развития у высших. Когда у последних формируются закладки костей, между ними сохраняется их исходный материал (соединительная ткань, хрящ). При помощи этого материала происходит сращение костей, т.е. образуется непрерывное соединение. Прерывные соединения развиваются на более поздних стадиях онтогенеза у наземных позвоночных и являются более совершенными, так как обеспечивают более дифференцированную подвижность частей скелета. Они развиваются вследствие возникновения щели в исходном материале, сохранившемся между костями. В последнем случае остатки хряща покрывают сочленяющиеся поверхности костей. Существует еще третий, промежуточный тип соединений – полусустав.

Непрерывные соединения. Непрерывное соединение –синартроз, или сращение, имеет место в том случае, когда кости связаны друг с другом соединяющей тканью. Движения при этом крайне ограниченны или вовсе отсутствуют. По характеру связующей ткани различают соединительнотканные сращения, или синдесмозы (рис. 1.5, A), хрящевые сращения, или синхондрозы , и сращения при помощи костной ткани – синостозы.

Синдесмозы бывают трех родов: 1) межкостные перепонки, например между костями предплечья или

голени; 2) связки, соединяющие кости (но не связанные с суставами), например связки между отростками позвонков или их дугами; 3) швы между костями черепа.

Межкостные перепонки и связки допускают некоторое смещение костей. В швах прослойка соединительной ткани между костями очень незначительна и движения невозможны.

Синхондрозом является, например, соединение I ребра с грудиной посредством реберного хряща, упругость которого допускает некоторую подвижность этих костей.

Синостозы развиваются из синдесмозов и синхондрозов с возрастом, когда соединительная ткань или хрящ между концами некоторых костей заменяется костной тканью. Примером могут служить сращение крестцовых позвонков и заросшие швы черепа. Движения здесь, естественно, отсутствуют.

3. Прерывные (синовиальные) соединения костей. Строение сустава. Классификация суставов по форме суставных поверхностей, количеству осей и по функции.

Прерывные соединения. Прерывное соединение –диартроз, сочленение, или сустав , характеризуется незначительным пространством (щелью) между концами соединяющихся костей. Различают суставы простые,образованные лишь двумя костями (например, плечевой сустав), сложные – когда в соединение входит большее число костей (например, локтевой сустав), и комбинированные, допускающие движение лишь одновременное с движением в других анатомически обособленных суставах (например, проксимальный и дистальный лучелоктевые суставы). В состав сустава входят: суставные поверхности, суставная сумка, или капсула, и суставная полость.

Суставные поверхности соединяющих костей более или менее соответствуют друг другу (конгруэнтны). На одной кости, образующей сустав, суставная поверхность обычно выпуклая и носит название головки. На другой кости развивается соответствующая головке вогнутость – впадина, или ямка. Как головка, так и ямка могут быть образованы двумя или несколькими костями. Суставные поверхности покрыты гиалиновым хрящом, что снижает трение и облегчает движение в суставе.

Суставная сумка прирастает к краям суставных поверхностей костей и образует герметичную суставную полость. Суставная сумка состоит из двух слоев. Поверхностный, фиброзный слой, образован волокнистой соединительной тканью, сливается с надкостницей сочленяющихся костей и несет защитную функцию. Внутренний, или синовиальный, слой богат кровеносными сосудами. Он образует выросты (ворсинки), выделяющие вязкую жидкость – синовию, которая смазывает сочленяющиеся поверхности и облегчает их скольжение. В нормально функционирующих суставах очень мало синовии, например в самом крупном из них – коленном – не более 3,5 см 3 . В некоторых суставах (в коленном), синовиальная оболочка образует складки, в которых откладывается жир, имеющий здесь защитную функцию. В других суставах, например, в плечевом, синовиальная оболочка образует наружные выпячивания, над которыми почти отсутствует фиброзный слой. Эти выпячивания в виде синовиальных сумок располагаются в области прикрепления сухожилий и уменьшают трение при движениях.

Суставной полостью называется герметически закрытое щелевидное пространство, ограниченное сочленяющими поверхностями костей и суставной сумкой. Оно заполнено синовией. В суставной полости между суставными поверхностями имеется отрицательное давление (ниже атмосферного). Атмосферное давление, испытываемое капсулой, способствует укреплению сустава. Поэтому при некоторых заболеваниях повышается чувствительность суставов к колебаниям атмосферного давления, и такие больные могут «предсказывать» изменения погоды. Плотное прижатие суставных поверхностей друг к другу в ряде суставов обусловлено тонусом, или активным напряжением мускулатуры.

Помимо обязательных, в суставе могут встречаться вспомогательные образования. К ним относятся суставные связки и губы, внутрисуставные диски, мениски и сесамовидные (от араб, sesamo – зерно) кости.

Суставные связки представляют собой пучки плотной волокнистой ткани. Они расположены в толще или поверх суставной сумки. Это местные утолщения ее фиброзного слоя. Перекидываясь через сустав и прикрепляясь к костям, связки укрепляют сочленение. Однако основная их роль заключается в ограничении размаха движения: они не допускают его перехода за известные пределы. Большинство связок не эластичны, но очень прочны. В некоторых суставах, например в коленном, есть внутрисуставные связки.

Суставные губы состоят из волокнистого хряща, кольцевидно охватывающего края суставных впадин, площадь которых они дополняют и увеличивают. Суставные губы придают суставу большую прочность, но уменьшают размах движений (например, плечевой сустав).

Диски и мениски представляют собой хрящевые прокладки – сплошные и с отверстием. Они располагаются внутри сустава между суставными поверхностями, а по краям срастаются с суставной сумкой. Поверхности дисков и менисков повторяют форму суставных поверхностей костей, прилегающих к ним с обеих сторон. Диски и мениски содействуют разнообразию движений в суставе. Они имеются в коленном и нижнечелюстном суставах.

Сесамовидные кости невелики и располагаются вблизи некоторых суставов. Одни из этих костей залегают в толще суставной сумки и увеличивая площадь суставной ямки, сочленяются с суставной головкой (например, в суставе большого пальца стопы); другие включаются в сухожилия мышц, перекидывающихся через сустав (например, надколенник, который заключен в сухожилие четырехглавой мышцы бедра). Сесамовидные кости относятся также к вспомогательным образованиям мышц.

Читайте так же:  Ортезы на голеностопный сустав отвисающей стопы

Классификация суставов основывается на сравнении формы сочленовных поверхностей с отрезками различных геометрических фигур вращения, получающихся от движения прямой или кривой линии (так называемой образующей) вокруг неподвижной условной оси. Разные формы движения образующей линии дают разные тела вращения. Например, прямая образующая, вращаясь параллельно оси, опишет цилиндрическую фигуру, а образующая в виде полуокружности дает шар. Суставная поверхность определенной геометрической формы позволяет совершать движения только по свойственным этой форме осям. Вследствие этого суставы классифицируются на одноосные, двуосные и трехосные (или практически многоосные).

Одноосные суставы могут быть цилиндрическими или блоковидными.

Цилиндрический сустав имеет суставные поверхности в виде цилиндров, причем выпуклая поверхность охватывается вогнутой впадиной. Ось вращения вертикальная, параллельна длинной оси сочленяющих костей. Она обеспечивает движение по одной вертикальной оси. В цилиндрическом суставе возможно вращение по оси внутрь и наружу. Примерами служат сочленения между лучевой и локтевой костями и сустав между зубом эпистрофея и атлантом.

Блоковидный сустав представляет собой разновидность цилиндрического, отличается от него тем, что ось вращения проходит перпендикулярно оси вращающейся кости и называется поперечной или фронтальной. В суставе возможны сгибание и разгибание. Примером являются межфланговые суставы .

Двуосные суставы могут быть седловидными(в одном направлении суставная поверхность вогнута, а в другом, перпендикулярном ему, – выпукла) и эллипсоидными (суставные поверхности эллипсоидные). Эллипс как тело вращения имеет только одну ось. Возможность движения в эллипсоидном суставе вокруг второй оси обусловлена неполным совпадением суставных поверхностей. Двуосные суставы допускают движения вокруг двух, расположенных в одной плоскости, но взаимно перпендикулярных осей: сгибание и разгибание вокруг фронтальной оси, приведение (к средней плоскости) и отведение вокруг сагиттальной оси. Примером эллипсоидного сустава может служить лучезапястный, а седловидного – запястно-пястный сустав 1 пальца руки.

Трехосные суставы бывают шаровидными и плоскими.

Шаровидные суставы – самые подвижные сочленения. Движения в них происходят вокруг трех главных взаимно перпендикулярных и пересекающихся в центре головки осей: фронтальной (сгибание и разгибание), вертикальной (вращение внутрь и наружу) и сагиттальной (приведение и отведение). Но через центр суставной головки можно провести бесконечное количество осей, поэтому сустав и оказывается практически многоосным. Таков, например, плечевой сустав.

Одной из разновидностей шаровидного сустава является ореховидный сустав, в котором значительная часть суставной шаровидной головки охватывается шаровидной суставной впадиной и в результате ограничивается размах движения. Примером служит тазобедренный сустав. Движения в нем могут происходить в любых плоскостях, но размах движений ограничен.

Плоский сустав – это отрезок шара с очень большим радиусом, благодаря чему кривизна сочленяющихся поверхностей очень незначительна: выделить головку и ямку нельзя. Сустав малоподвижен и допускает лишь незначительное скольжение сочленяющихся поверхностей в различных направлениях. Примером является сустав между сочленовными отростками грудных позвонков.

Кроме описанных движений, в двуосных и трехосных суставах возможно еще движение, называемое круговым. При этом движении конец кости, противоположный закрепленному в суставе, описывает круг, а кость в целом – поверхность конуса.

Полусустав характеризуется тем, что кости в нем соединяются хрящевой прокладкой, которая имеет внутри щелевидную полость. Суставная капсула отсутствует. Таким образом, этот вид соединения представляет собой переходную форму между синхондрозом и диартрозом (между лонными костями таза).

Состав сустава входят

Суста́вы (лат. articulatio ) — подвижные соединения костей скелета, разделённых щелью, покрытые синовиальной оболочкой и суставной сумкой. Прерывистое, полостное соединение, позволяющее сочленяющимся костям совершать движения относительно друг друга с помощью мышц. Суставы располагаются в скелете там, где происходят отчетливо выраженные движения: сгибание (лат. flexio ) и разгибание (лат. extensio ), отведение (лат. abductio ) и приведение (лат. adductio ), пронация (лат. pronatio ) и супинация (лат. supinatio ), вращение (лат. circumflexio ). Как целостный орган, сустав принимает важное участие в осуществлении опорной и двигательной функций. Все суставы делятся на простые, образованные двумя костями, и сложные, представляющие собой сочленение трёх и более костей.

Каждый сустав образован суставными поверхностями эпифизов костей, покрытыми гиалиновым хрящом, суставной полостью, содержащей небольшое количество синовиальной жидкости, суставной сумкой и синовиальной оболочкой. В полости коленного сустава присутствуют мениски — эти хрящевые образования увеличивают конгруэнтность (соответствие) суставных поверхностей и являются дополнительными амортизаторами, смягчающими действие толчков.

Основные элементы сустава:

Суставные поверхности

Суставные поверхности (лат. fácies articuláres ) сочленяющихся костей покрыты гиалиновым (реже волокнистым) суставным хрящом толщиной 0,2—0,5 мм. Постоянное трение поддерживает гладкость, облегчающую скольжение суставных поверхностей, а сам хрящ, благодаря эластичным свойствам смягчает толчки, выполняя роль буфера [1] .

Суставная капсула

Суставная капсула (лат. cápsula articuláris ) или суставная сумка — герметично окружает суставную полость, прирастает к сочленяющимся костям по краю их суставных поверхностей, предохраняет сустав от различных внешних повреждений (разрывов и механических повреждений). Покрыта наружной фиброзной и внутренней синовиальной мембраной. Это наиболее иннервируемая часть сустава, осуществляющая болевую восприимчивость. Суставная сумка состоит из плотных волокон, придающих ей прочность. В неё также вплетены волокна связок и сухожилий близлежащих мышц. Помимо защитной функции, суставная сумка призвана обеспечивать достаточное скольжение сочленяющихся поверхностей костных элементов друг относительно друга. С этой целью в полость сустава секретируется синовиальная жидкость.

Суставная полость

Суставная полость — щелевидное герметически закрытое пространство, ограниченное синовиальной оболочкой и суставными поверхностями. В суставной полости коленного сустава находятся мениски.

Околосуставные ткани

Околосуставные ткани — это ткани, непосредственно окружающие сустав: мышцы, сухожилия, связки, сосуды и нервы. Они чувствительны к любым внутренним и внешним отрицательным воздействиям, нарушения в них незамедлительно сказываются и на состоянии сустава. Окружающие сустав мышцы обеспечивают непосредственное движение сустава, укрепляют его снаружи. По соединительнотканным межмышечным прослойкам проходят многочисленные нервные пути, кровеносные и лимфатические сосуды, питающие суставы.

Связки суставов

Связки суставов — прочные, плотные образования, которые укрепляют соединения между костями и ограничивают амплитуду движения в суставах. Связки располагаются на внешней стороне суставной капсулы, в некоторых суставах (в коленном, тазобедренном) расположены внутри для обеспечения большей прочности.

Читайте так же:  Боль в тазобедренном суставе при поднятии ноги

Кровоснабжение сустава осуществляется из широко анастомозирующей (разветвлённой) суставной артериальной сети, образованной 3—8 артериями. Иннервация сустава осуществляется его нервной сетью, образованной симпатическими и спинномозговыми нервами.

Все суставные элементы (кроме гиалинового хряща) имеют иннервацию, иными словами, в них обнаруживаются значительные количества нервных окончаний, осуществляющих, в частности, болевое восприятие, следовательно, могут стать источником боли.

Классификация суставов

Согласно действующей анатомо-физиологической классификации суставы различают [2] :

  • по числу суставных поверхностей,
  • по форме суставных поверхностей и
  • по функции.

По числу суставных поверхностей:

  • Простой сустав (лат.articulatio simplex ) — имеет две суставные поверхности, например межфаланговый сустав большого пальца
  • Сложный сустав (лат.articulatio composita ) — имеет более двух суставных поверхностей, например локтевой сустав
  • Комплексный сустав (лат.articulatio complexa ) — содержит внутрисуставной хрящ (мениск либо диск), разделяющий сустав на две камеры, например Височно-нижнечелюстной сустав
  • Комбинированный сустав — комбинация нескольких изолированных суставов, расположенных отдельно друг от друга, например Височно-нижнечелюстной сустав

По функции и форме суставных поверхностей:

  • Одноосные суставы:
  1. Цилиндрический сустав, (лат.art.cylindrica ), например атланто-осевой срединный
  2. Блоковый сустав, (лат.art.ginglymus ), например межфаланговые суставы пальцев
  3. Винтообразный сустав, как разновидность блоковидного, например плечелоктевой
  • Двухосные суставы:
  1. Эллипсовидный (лат.art.ellipsoidea ), например Лучезапястный сустав
  2. Мыщелковый (лат.art.condylaris ), например Коленный сустав
  3. Седловидный (лат.art.sellaris ), например запястно-пястный сустав I пальца
  • Многоосные суставы:
  1. Шаровидный (лат.art.spheroidea ), например Плечевой сустав
  2. Чашеобразный, как разновидность шаровидного, например тазобедренный сустав
  3. Плоский (лат.art.plana ), например межпозвонковые суставы.

Цилиндрический сустав

Цилиндрический суста́в (враща́тельный сустав) — цилиндрическая суставная поверхность, ось которой располагается в вертикальной оси тела или параллельно длинной оси сочленяющихся костей и обеспечивает движение вокруг одной (вертикальной) оси — вращение (лат. rotátio ) [2] .

Блоковидный сустав

Блокови́дный сустав — суставная поверхность представляет собой лежащий во фронтальной плоскости цилиндр, расположенный перпендикулярно по отношению к длинной оси сочленяющихся костей [2] .

Эллипсовидный сустав

Эллипсови́дный сустав — суставные поверхности имеют вид отрезков эллипса (одна выпуклая, а другая вогнутая), которые обеспечивают движение вокруг двух взаимно перпендикулярных осей [2] .

Мыщелковый сустав

Мы́щелковый сустав — имеет выпуклую суставную головку, в виде выступающего отростка (мыщелка), близкого по форме к эллипсу. Мыщелку соответствует впадина на суставной поверхности другой кости, хотя их поверхности могут существенно отличаться друг от друга. Мыщелковый сустав можно рассматривать как переходную форму от блоковидного сустава к эллипсовидному [2] .

Седловидный сустав

Седлови́дный сустав — образован двумя седловидными суставными поверхностями, сидящими «верхом» друг на друге, из которых одна движется вдоль и поперёк другой, благодаря чему возможно движение в двух взаимно перпендикулярных осей [2] .

Шаровидный сустав

Шарови́дный сустав — одна из суставных поверхностей представлена выпуклой шаровидной формы головкой, а другая соответственно вогнутой суставной впадиной. Теоретически движение в этом виде сустава может осуществляться вокруг множества осей, но практически используется только три. Шаровидный сустав самый свободный из всех суставов [2] .

Плоский сустав

Пло́ский сустав — имеют практически плоские суставные поверхности (поверхность шара с очень большим радиусом), поэтому движения возможны вокруг всех трёх осей, однако объем движений ввиду незначительной разности площадей суставных поверхностей незначительный [2] .

Тугой сустав

Туго́й сустав (амфиартроз) — представляют группу сочленений с различной формой суставных поверхностей с туго натянутой капсулой и очень крепким вспомогательным связочным аппаратом, тесно прилегающие суставные поверхности резко ограничивают объём движений в этом виде сустава. Тугие суставы сглаживают сотрясения и смягчают толчки между костями [2] .

Болезни суставов

Гипермобильность суставов — повышенная подвижность суставов; растяжение суставных связок, позволяющее суставу делать более объёмистые движения, выходящие за пределы его анатомических возможностей. В результате, элементы соприкасающихся хрящевых поверхностей могут издавать характерные щелчки. Такая растяжимость суставных связок возникает в результате структурного изменения коллагена, который становится менее прочен и более эластичен и приобретает способность к частичной деформации. Этот фактор имеет наследственное происхождение, однако механизм развития этой соединительнотканной неполноценности до сих пор остаётся неизвестным.

Гипермобильность выявляется по большей части у женщин, причём молодых. Генетическая обусловленность гипермобильности приводит к изменению многих тканей. Прежде всего суставов, но также и тех органов, в которых содержится много изменённого коллагена. Например, у таких людей кожа тонкая, растяжимая и ранимая, на ней легко появляются растяжки, причём они появляются даже у совсем молоденьких девушек или никогда не рожавших женщин. При гипермобильности суставов наблюдается и несостоятельность сосудов, потому что их стенки тоже состоят из коллагена. Если он растяжимый, то сосуды под напором крови очень быстро растягиваются. Отсюда у таких людей бывает ранняя варикозная болезнь (в 25 или даже 20 лет).

Людям с гипермобильностью не рекомендуется выбирать работу, где нужно длительное время пребывать в одном и том же положении (особенно это касается учителей, продавцов, хирургов, парикмахеров, которые стоят по несколько часов подряд). У людей этих профессий очень велик риск заболевания варикозом и артрозом, а при наличии гипермобильности риск практически стопроцентный. Кроме того, нужно осторожно относиться к занятиям спортом — чтобы не вызвать ещё большего перерастяжения связок.

АНАТОМИЯ И ФУНКЦИИ СУСТАВОВ

Видео (кликните для воспроизведения).

Поскольку при многих ревматических заболеваниях воспалительные процессы развиваются в соединительной ткани суставов, а клинические признаки суставной патологии составляют частый клинический синдром этих болезней, возникла необходимость напомнить анатомические и физиологические особенности суставов.

Суставом называется замкнутое пространство, образован ное суставными поверхностями костей скелета и суставной капсулой. Основные функции суставов — двигательная (перемещение тела) и опорная (сохранение положения тела). По анатомическому строению выделяют три вида суставов.

Синартрозы — неподвижные суставы, которые в свою очередь подразделяют на синдесмозы и синхондрозы. К первому подвиду относят соединения костей черепа, остистых отростков позвонков, скрепленных между собой посредством желтой связ ки, ко второму — реберно-грудинные сочленения, соединяющиеся с помощью волокнистого хряща, соединение диафиза с эпифизом длинной кости.

Читайте так же:  Гимнастика при бурсите коленного сустава

Симфизы — полуподвижные суставы хрящевого типа. К ним относят лонное сочленение, в котором кости соединены между собой волокнистым хрящом, однако имеющийся в таком суставе зачаток суставной полости позволяет совершать небольшие движения.

Диартрозы — подвижные сочленения. Диартрозы — истинные синовиальные суставы, в которых кости полностью отделены друг от друга гиалиновым хрящом. Суставные концы костей в таком суставе заключены в фиброзную, укрепленную связками суставную капсулу, внутренняя стенка которой выстлана синовиальной оболочкой, секретирующей в полость сустава суставную жидкость. Все это в комплексе обеспечивает двигательную и опорную функции сустава, поэтому практически все суставы конечностей относятся к такому типу. При этом различают семь форм диартрозов:

1) плоские суставы, образующиеся при соприкосновении друг о друга плоскостей двух костей (например, некоторые запястные и предплюсневые суставы), движения в них совершаются путем скольжения одной плоскости относительно другой;

2) шаровидные суставы, в которых один суставной конец имеет геометрически точную форму сферы или части сферы, другой представляет собой вогнутую поверхность, конгруэнтную шаровидному сочленяющемуся концу; примерами шаровидных суставов являются тазобедренный и плечелопаточный, в которых допускается достаточно большая свобода всех видов движений — сгибание, разгибание, переразгибание, отведение, приведение, ротация и круговые движения;

[3]

3) эллипсовидные суставы, один из сочленяющихся концов которых имеет вид эллипса, а другой — вогнутой впадины. В результате такого анатомического строения объем дви-

жений в этих сочлинений ограничен и в них невозможны круговые движения; различают простые эллипсовидные суставы (пястно-фаланговые) и сложные, с несколькими парами суставных сочленений (лучезапястные);

4) блоковидные суставы, в которых один суставной конец представляет собой по форме блок, напоминающий катушку (шпульку), другой—вогнутый суставной конец охватывает часть блока и соответствует ему по форме. Типичным блоковидным суставом является межфаланговый сустав пальцев кисти или стопы. Движения в таких сочленениях могут совершаться только в одной плоскости — сгибание — разгибание. К блоковидным относится

и локтевой сустав. Он состоит из трех сочленений — плечелоктевого, плечелучевого и лучелоктевого, в результате чего в данном сложном суставе возможны, помимо сгибания и разгибания, супинация и пронация, т. е. ротационные движения;

5) вращающиеся (колесовидные) суставы, вариантом которых является, например, сустав I шейного позвонка, состоящий из кольца, образованного передней дугой атланта и поперечной связкой, и зубовидного остростка II шейного позвонка, входящего в кольцо и служащего своеобразной осью, вокруг которой и вращается кольцо атланта; в локтевом суставе лучелоктевое сочленение также следует отнести к вращающемуся типу суставов, так как головка лучевой кости вращается в кольцевидной связке, охватывающей головку луча и прикрепляющейся к локтевой вырезке;

6) седловидные суставы, типичным представителем которых является пястнозапястный сустав; соч ленованную поверхность в виде выпуклого седла имеет трапециевидная кость, а форму вогнутого седла — I пястная кость; такое анатомическое строение позволяет производить круговые движения в сагиттальной и фронтальной плоскостях. Круговые движения по оси в этом суставе невозможны;

Капсула любого СУСТЯВЯ состоит из двух слоев: наружного фиброзного и внутренне- го-(синовиальная оболочка). Наружный фиброзный слой толще и прочнее внутреннего. Он состоит из плотной волокнистой соединительной ткани, в которой можно выявить продольные и круговые фиброзные пучки. В некоторых местах фиброзный слой капсулы истончается настолько, что могут образовываться карманы (бурситы) или завороты, в других местах наружный слой капсулы сустава, напротив, утолщен, являясь по сути связкой сустава. Тол-

щина и напряженность фиброзного слоя капсулы обсуловлены функциональной нагрузкой на сустав.

Синовиальная оболочка представляет собой пласт соединительной ткани, состоящий из покровного, коллагенового и эластического слоев [Павлов В. Н., 1980].

Синовиальная оболочка, граничащая непосредственно с суставной полостью в отличие от серозных оболочек, выстланных непрерывным слоем эпителиальных клеток, образована прерывистым слоем синовиоцитов (синовиальных клеток), не покрывающим хрящ. Синовиоциты (специализированные фибро бласты) расположены в один — три слоя на отдельных участках, другие участки синовиальной оболочки представлены основным веществом и межклеточным матриксом соединительной ткани с широко разветвленной сетью кровеносных сосудов, лимфатических капилляров и нервных окончаний.

По морфофункциональной структуре синовиоциты подразделяют на три типа: А, В, С. Принято считать, что клетки типа А являются фагоцитирующими клетками, которые элиминируют продукты клеточного и тканевого распада, хрящевой детрит, неизбежно и постоянно образующийся в результате механических нагрузок на сустав. Клетки типа В продуцируют протеоглика ны — гиалуронаты. Клетки типа С синовиоцитов называют промежуточными, поскольку в них сочетаются признаки клеток как типа А, так и типа В, что позволяет судить о дифференциации синовиоцитов из одной клетки.

Кровеносные сосуды проникают со стороны фиброзного слоя капсулы в синовиальную оболочку неравномерно, кроме того, капилляры располагаются непосредственно под кроющими клетками — синовиоцитами, что является особенностью строения мик роциркуляторной системы капсулы сустава. Другая особенность микроциркуляторной системы синовиальной оболочки состоит в своеобразном строении стенок капилляров, которые местами не имеют базальной мембраны. Решетчатое строение стенки капилляра (фенестрация) обеспечивает транспорт в направлении кровь — сустав и сустав — кровь, облегчая приток в сустав необходимых компонентов плазмы крови и удаление из сустава продуктов метаболизма. Кроме того, выявлена возможность транспорта в направлении сустав — кровь — лимфа, что связано с насыщенностью синовиальной оболочки лимфатическими капиллярами, расположенными преимущественно в поверхностных ее слоях. Иннервируют синовиальную оболочку смешанные спинномозговые нервы, в составе которых имеются и симпатические волокна.

Основными функциями синовиальной жидкости являются метаболическая, локомоторная, трофическая и барьерная.

Метаболическая функция заключается в удалении через сосудистую сеть продуктов распада клеток синовиальной оболочки и износившихся частиц хряща в синовиальной жидкости.

Локомоторная, или фрикционная, функция обеспечивает за счет высоковязких и упругоэластических свойств гиалуронатов смазку сустава и идеальное скольжение трущихся его частей, а также компрессионно-декомпрессионный эффект.

Читайте так же:  Как разработать тазобедренный сустав при артрозе

Трофическая функция заключается в транспортировке энергетических веществ для бессосудистого хряща. Барьерная функция заключается в фагоцитировании чужеродных белковых соединений или собственных денатурированных белков и их переваривании при участии ферментов. Наличие иммунокомпетентных клеток и макрофагов в синовиальной оболочке и синовиальной жидкости также обеспечивает защиту ткани сустава от повреждения.

Исследование синовиальной жидкости, отражающей состояние сустава в целом, имеет большое значение в диагностике заболеваний суставов. В норме при пункции сустава трудно получить синовиальную жидкость из-за ее малого количества и выраженной вязкости. Синовиальная жидкость является транссудатом плазмы, в который добавлены гиалуронат, а также небольшое количество клеток крови (не более 0,2-на 10 в 9мл). Синовиальная жидкость здоровых людей стерильная, прозрачная, очень вязкая, содержащая до 20 г/л белка,

до 5 ммоль/л глюкозы и др. Клеточный состав синовиальной жидкости здорового человека представлен синовиоцитами (34—37 %), гистиоцитами (8—12 %), недифференцированными клетками (8—10 %), а также такими клетками крови, как лимфоциты (37—42 %), моноциты (1—3%), нейтрофилы (1—2 %). Соответственно при патологии все параметры синовиальной жидкости меняются, что имеет определенное, а порой и решающее диагностическое значение, например, при РА, подагре, инфекционном артрите и др.

Суставной хрящ является разновидностью гиалиново го хряща. Макроскопически он представляет собой пласт, соответствующий по форме конфигурации костных суставных поверхностей. Он не содержит кровеносных и лимфатических сосудов, нервов. Цвет хряща белый с синеватым оттенком. Толщина хряща зависит от типа сустава и функциональной нагрузки на него и составляет 1—7 мм. У молодых людей поверхность хряща на вид гладкая, блестящая, поддается легкому сжатию, но по мере старения хрящ становится тверже, теряет прозрачность, приобретает желтоватый оттенок. Электронно-микроскопическое сканирование хряща выявило волокнистый характер его поверхности, наличие лакун, ведущие в глубь хрящевой ткани. Такое строение хрящевой пластинки обеспечивает лучшее сцепление ее верхних тангенциальных слоев с вязкой синовиальной жидкостью, способствуя проникновению жидкости в глубокие слои, что необходимо для питания бессосудистого хряща. Кроме того, часть питательных веществ проникает в хрящ из крови через сосуды суб хондральной зоны.

Микроскопически хрящ состоит из сравнительно небольшого количества хрящевых клеток—хондроцитов, составляющих всего 0,01—0,1 % объема хряща и межклеточного матрикса. Основная функция хондроцитов — локальная продукция изнашивающихся в естественных условиях элементов матрикса, в первую очередь коллагена II типа и ПГ.

Матрикс — это волокнистый каркас, состоящий из коллагено вых волокон (тип II), образующих сеть строго ориентированных переплетений, направленных таким образом, чтобы векторы сил напряжения противодействовали силам нагрузки, испытываемым суставом, поэтому коллагеновые фибриллы вблизи артикуляр ной поверхности хряща ориентированы тангенциально по отношению к ней, а в более глубоких слоях матрикса коллагеновые волокна приобретают перпендикулярное расположение, количество их увеличивается и они становятся толще. Эта биохимическая система усилена основным веществом матрикса хряща, в котором 60—80 % массы составляют вода и ПГ, которые чрезвычайно гидрофобны. ПГ основного вещества представлены преимущественно хондроитин-6-сульфатом, в меньшей мере кера тан-сульфатом. Такая структура матрикса хряща придает ему устойчивость к перегрузкам, а в целом хрящ представляет собой сложную коллоидно-гидравлическую систему, идеально амортизирующую при механических нагрузках и перегрузках сустава. Указанная ультрамолекулярная структура хряща обеспечивает такие его свойства, как упругость, эластичность, прочность, стабильность.

Физиология скольжения сочленованных поверхностей в условиях нагрузки и тесно связанная с этим трофическая функция сустава рассматриваются в настоящее время согласно гипотезе «усиленной смазки». При локомоторной нагрузке из глубинных слоев хряща через поры и пространства в эластических волокнах на поверхность хряща, испытывающего нагрузку, выдавливается жидкость, богатая ПГ, которая способствует увеличению концентрации гиалуроната в волнообразных углублениях хряща.

[2]

Образуется защитная пленка, толщина которой зависит от степени нагрузки. При уменьшении нагрузки жидкость обратно через поры входит в глубь хрящевой пластинки, и концентрация гиалуроната уменьшается. Данный процесс можно сравнить с «работой» мокрой губки, из которой во время сжатия выделяется вода; после прекращения сжатия вода вновь может втянуться в поры губки. В патологических состояниях эта коллоидногидродинамическая система действует недостаточно или перестает функционировать, что способствует более быстрой дегенерации или деструкции хряща. Учитывая сходство физикохимических, механических и физиологических свойств основных элементов сустава — си-

Строение и функции суставов

Сустав — это подвижное сочленение двух или более костей скелета. Суставы объединяют кости скелета в единое целое. Суставы обеспечивают скелету человека подвижность. Любое движение является прежде всего движением суставов, поэтому их состояние особенно важно для организма.

В теле человека насчитывается множество суставов, выполняющих различные задачи, но основная их функция — обеспечение движений скелета, а также создание точек опоры.

Общее строение и функции суставов

Суставы нашего организма — это подлинный шедевр инженерной мысли. Они сочетают достаточную простоту и компактность конструкции с высокой прочностью. Однако многие аспекты их функции изучены не до конца.

В организме человека насчитывается более 230 суставов. Они представлены в скелете повсюду, где происходят отчетливо выраженные движения частей тела: сгибание и разгибание, отведение и приведение, вращение.

Сочленения костей априори должны быть подвижными, чтобы человек мог реализовать двигательную функцию, и вместе с этим надёжно скреплены между собой. Роль таких «креплений» выполняют суставы.

И несмотря на то, что величина и форма суставов чрезвычайно разнообразны, в конструкции любого из них есть обязательные элементы. Это прежде всего две — как минимум — кости, ибо сустав не что иное, как способ соединения костей, который специалисты называют прерывистым. (Существует и непрерывное соединение. Так, например, соединены кости черепа, тела позвонков).

Прерывистое соединение позволяет сочленяющимся костям совершать движения относительно друг друга, разумеется, с помощью мышц. Суставные поверхности костей неодинаковы. По своей форме они могут напоминать шар, эллипс, цилиндр и другие геометрические фигуры. На обе сочленяющиеся поверхности «нанесен» материал высокой прочности — хрящ, толщина , которого в разных суставах колеблется от 0,2 до 6 миллиметров.

Читайте так же:  Подагра суставов стопы

По внешнему виду однородный, гладкий и блестящий хрящ под электронным микроскопом напоминает губку с очень тонкими порами. Ткань хряща образована клетками-хондроцитами и межклеточным веществом, через посредство которого осуществляется снабжение хондроцитов питательными веществами, водой, кислородом. Наблюдения показали, что волокна межклеточного вещества могут менять свое направление, приспосабливаясь к длительно действующим нагрузкам. Такая динамичность волокон увеличивает износоустойчивость хрящевой ткани.

Место сочленения костей окружено суставной капсулой. Наружный слой капсулы прочный, волокнистый: внутренняя ее поверхность покрыта слоем эндотелиальных клеток, которые вырабатывают тягучую, прозрачную, желтоватого цвета жидкость — синовию.

Синовии в суставе, как говорится, кот наплакал: от одного до трех миллилитров. Но значение ее трудно переоценить. Во-первых, это прекрасная смазка: увлажняя суставные поверхности, она уменьшает трение между ними и тем самым предотвращает их преждевременное изнашивание. Одновременно синовия укрепляет сустав, создавая силу сцепления между суставными поверхностями. Она, словно буфер, смягчает толчки, которые кости испытывают при ходьбе, прыжках, различных движениях. Синовиальной жидкости принадлежит также существенная роль в обеспечении питания хрящевой ткани.

Установлено, что в каждом суставе поддерживается характерный для него уровень синовии. А вот состав ее не всегда одинаков. Например, с увеличением скорости движения в суставе вязкость синовии снижается, благодаря этому еще больше уменьшается трение между суставными поверхностями костей.

Исследуя функцию синовиальной оболочки, ученые пришли к выводу, что она работает как биологический насос. Экспериментаторы обнаружили в этой оболочке узкодифференцированные клетки типа А и В. Клетки типа В специализируются на выработке гиапуроновой кислоты, которая и сообщает синовии чудесное свойство способствовать осуществлению «движения без трения». Клетки типа А — это своеобразные уборщики: они отсасывают из синовиальной жидкости отработанные продукты жизнедеятельности клеток.

Однако специалистам известна лишь общая схема устройства и действия этого живого насоса. Основные его «узлы» и особенности его работы еще предстоит изучить.

С функцией биологического насоса тесно связано поддержание постоянного отрицательного давления внутри суставной полости. Это давление всегда ниже атмосферного (что увеличивает силу сцепления между суставными поверхностями, они плотнее прилегают друг к другу), но человек этого не ощущает. Однако все мы знаем людей, у которых суставы с возрастом становятся чувствительны к перепадам атмосферного давления. А вот чем объясняется такая чувствительность, исследователям не вполне ясно.

Конструкция большинства суставов не ограничивается обязательными элементами и включает различные диски, мениски, связки и прочие «технические усовершенствования», которые природа создала в процессе эволюции. В коленном суставе, например, два мениска: наружный и внутренний. Благодаря этим серповидным хрящам совершаются вращательные и сгибательно-разгибательные движения в суставе, они служат также буферами, защищающими суставные поверхности от резких толчков. Роль их в физиологии и механике коленного сустава столь велика, что мениски иногда называют суставом в суставе.

Функция, возложенная на сустав, диктует конструкцию. Убедительнейшее тому доказательство — суставы кисти. В процессе трудовой деятельности человека суставной и связочный аппарат кисти достиг конструктивного совершенства. Разнообразные сочетания суставов — а их в кисти насчитывается более двадцати, включая блоковидные. эллипсоидные, шаровидные, седловидные, — позволяют производить дифференцированные движения.

Или, к примеру, такие суставы, как плечевой и тазобедренный. Оба они шаровидные, оба простые, так как каждый составлен двумя костями.

Попробуйте поднять руку через сторону вверх. Легко! Теперь поднимите ногу. А вот это гораздо сложнее, верно? Почему? Да потому, что в плечевом суставе относительно большой головке плечевой кости соответствует небольшая суставная впадина лопатки: головка приблизительно в три раза больше впадины. Емкость ее увеличивает волокнисто-хрящевое кольцо, так называемая суставная губа, которое присоединяется к краю впадины. Такое строение позволяет совершать в плечевом суставе движения практически во всех направлениях.

В тазобедренном суставе такой объем движений не предусмотрен. Здесь главное другое — прочность конструкции: ведь суставу постоянно приходится испытывать значительные и динамические и статические нагрузки.

В этом суставе впадина тазовой кости почти полностью охватывает головку бедра, что, естественно, ограничивает объем движений. Но не только поэтому тазобедренный сустав менее подвижен, чем плечевой. Если в плечевом суставе капсула весьма просторная и слабо натянутая, то в тазобедренном она менее объемна и очень прочна, в некоторых местах даже усилена добавочными связками.

А почему же гимнастам, акробатам, артистам балета, цирка ничего не стоит не только поднять ногу вертикально вверх, но проделать и более сложные движения? Это еще одно доказательство пластичности опорно-двигательного аппарата, его огромных потенциальных возможностей.

Видео (кликните для воспроизведения).

В чем секреты этой пластичности, высокой работоспособности суставов? Специалисты ведут исследования, которые помогут ответить на этот и другие вопросы. Результаты научных поисков имеют не только теоретический интерес. В них заинтересована практическая медицина: хирургия, ортопедия, трансплантология.

Источники


  1. Замятин, Е. Е. Замятин. Уездное. Мы. А. Платонов. Ювенильное море. Котлован. Критика и комментарии. Темы и развернутые планы сочинений. Материалы для подготовки к уроку / Е. Замятин, А. Платонов. — М. : АСТ, 2015. — 608 c.

  2. Ревматизм и ревматоиды. Книга 2. — М. : Медицина, 2016. — 304 c.

  3. Артроз, артрит. Лечение и профилактика. — М. : Газетный мир, 2011. — 160 c.
  4. Соловьева, Е. В. Болят суставы: что делать? Артрит, артроз, радикулит, отложение солей / Е. В. Соловьева. — М. : СПб: Невский проспект, 2014. — 160 c.
  5. Труфанов, Геннадий Евгеньевич Лучевая диагностика заболеваний и повреждений локтевого сустава / Труфанов Геннадий Евгеньевич. — М. : Элби, 2014. — 900 c.
Состав сустава входят
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here